欢迎来到MSDS查询网--MSDS安全网
当前位置:MSDS安全网 -> 英文MSDS查询 -> PALM KERNEL OIL DIETHANOLAMIDE MSDS报告
免费英文MSDS查询网站--MSDS安全网
PALM KERNEL OIL DIETHANOLAMIDE MSDS报告[下载][中文版]

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

PALM KERNEL OIL DIETHANOLAMIDE

NFPA

Flammability 1
Toxicity 2
Body Contact 3
Reactivity 1
Chronic 2
SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4

PRODUCT USE

Fatty acid amides are nonionic substances which have a strong tendency to reduce friction
on various surfaces by forming a layer on surfaces. This coating action may be attributed
to their hydrophobic character and strong hydrogen bonding. Primary, secondary, and
bisamides are widely used as lubricating or slip agents and alkanolamides. Their
ethoxylated counterparts are commonly used as surfactants in personal care and detergent
applications. The dehydration of amides that produces nitriles is of great commercial
value. The most widely used synthetic route for primary amides is the reaction of a fatty
acid with anhydrous ammonia. Typical uses of fatty acid amides include lubricants for
synthetic resins (polyethylene, polypropylene, etc.), anti- blocking agents, mold release
agents, printing ink additives, and pigment/dye dispersants. Non- ionic foam stabiliser
and viscosity index improver for use in bubble baths, shampoos, shower gels and liquid
dishwashes. Also used as an emulsifier, detergent, dispersant and wetting agent.

SYNONYMS

alkanolamide, "palmkernamide DEA", "nonionic surfactant"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Irritating to skin.
Risk of serious damage to eyes.
Harmful to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

  Accidental ingestion of the material may be damaging to the health of the individual.  Nonionic surfactants may produce localized irritation of the oral or gastrointestinal lining and induce vomiting and mild diarrhea.  

EYE

  If applied to the eyes, this material causes severe eye damage.  Vapors of volatile amines irritate the eyes, causing excessive secretion of tears, inflammation of the conjunctiva and slight swelling of the cornea, resulting in "halos" around lights. This effect is temporary, lasting only for a few hours. However this condition can reduce the efficiency of undertaking skilled tasks, such as driving a car. Direct eye contact with liquid volatile amines may produce eye damage, permanent for the lighter species.  Non-ionic surfactants can cause numbing of the cornea, which masks discomfort normally caused by other agents and leads to corneal injury. Irritation varies depending on the duration of contact, the nature and concentration of the surfactant.  

SKIN

  This material can cause inflammation of the skin oncontact in some persons.  The material may accentuate any pre-existing dermatitis condition.  Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.  Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.  

INHALED

  The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.  Inhalation hazard is increased at higher temperatures.  Not normally a hazard due to non-volatile nature of product.  

CHRONIC HEALTH EFFECTS

  There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.  Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.  There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.  Prolonged or chronic exposure to alkanolamines may result in liver, kidney or nervous system injury. Repeated inhalation may aggravate asthma and inflammatory or fibrotic pulmonary disease.Results of repeated exposure tests with diethanolamine (DEA) in laboratory animals include anaemia (rats) and effects on the kidneys (rats and mice) and liver (mice). DEA produces nervous system injury in dogs and rats. Heart and salivary gland lesions have also been seen in mice treated cutaneously with DEA and in mice receiving DEA in drinking water. Rats given high doses of DEA developed anaemia and testicular lesions.Exaggerated doses of DEA produced heart and nervous system effects in other animals. Changes in other organs were judged to be secondary due to the poor health of animals subjected to extremely high doses of DEA. Rats, rabbits and guinea pigs exposed to high vapour concentrations of volatile monoethanolamine (MEA) (up to 1250 ppm) for periods of up to 5 weeks developed pulmonary, hepatic and renal lesions. Dogs, rats and guinea pigs exposed to 100 ppm MEA for 30 days, became apathetic and developed poor appetites. Animal tests also indicate that inhalation exposure to MEA may result in nervous system injury. All species exposed to airborne MEA experienced dermal effects, varying from ulceration to hair loss probably resulting from contact with the cage.An increased incidence of skeletal variations, suggestive of a slight developmental delay was seen in the foetuses of rats given 1500 mg/kg/day DEA cutaneously; this also produced significant maternal toxicity. No foetal malformations, however, were seen in rats nor in rabbits receiving identical treatment. The foetus of rats given high doses of MEA by gavage, showed an increased rate of embryofoetal death, growth retardation, and some malformations including hydronephrosis and hydroureter. The high doses required to produce these effects bring into question the relevance of this finding to humans. There is some evidence that embryofoetotoxicity and teratogenicity does not occur in rats when MEA is administered by dermal application to the mother.The National Toxicology Program (NTP) concluded that there is clear evidence of liver tumours and some evidence of kidney tumours in mice exposed dermally to DEA over their lifetime. Chronic skin painting studies in mice of both sexes produced liver tumours and an increased incidence of kidney tumours in male mice. The significance of these findings to humans is unclear as DEA is neither genotoxic, mutagenic nor clastogenic, and did not induce tumours in rats or transgenic mice similarly treated. Alkanolamines (especially those containing a secondary amine moiety) may react with nitrites or other nitrosating agents to form carcinogenic N-  nitrosamines. Alkanolamines are metabolised by biosynthetic routes to ethanolamine and choline and incorporated into phospholipids. They are excreted predominantly unchanged with a half-life of approximately one week. In the absence of sodium nitrite, no conversion to carcinogenic N-nitrosamines was observed.Diethanolamine competitively inhibits the cellular uptake of choline, in vitro, and hepatic changes in choline homeostasis, consistent with choline deficiency, are observed in vivo.Many amines are potent skin and respiratory sensitisers and certain individuals especially those described as "atopic" (i.e. those predisposed to asthma and other allergic responses) may show allergic reactions when chronically exposed to alkanolamines.In a study with coconut diethanolamide, the National Toxicology Program (Technical Report Series 479), showed clear evidence of carcinogenic activity in male B6C3F1 mice based on increased incidences of hepatic and renal tubule neoplasms and in female B6C3F1 mice based on increased incidences of hepatic neoplasms. There was equivocal evidence of carcinogenic activity in female F344/N rats based on a marginal increase in the incidence of renal tube neoplasms. These increases were associated with the concentration of free diethanolamine present as a contaminant in the diethanolamine condensate. Exposure to rats to coconut oil diethanolamine condensate by dermal application in ethanol for 2 years resulted in epidermal hyperplasia, sebaceous gland hyperplasia, hyperkeratosis and parakeratosis in males and females and ulcer in females at the site of application. There were increases in the incidences of chronic inflammation, epithelial hyperplasia, and epithelial ulcer in the forestomach of female rats. The severity of nephropathy in dosed female rats were increased. Exposure of mice to coconut oil diethanolamine condensate by dermal application for 2 years resulted in increased incidences of eosinophilic foci of the liver in males. Increased incidences of epidermal hyperplasia, sebaceous gland hyperplasia, and hyperkeratosis in males and females, ulcer in males, and parakeratosis and inflammation in females at the site of application and of follicular cell hyperplasia in the thyroid gland of males and females, were chemical related.  
【温馨提示】 MSDS安全网为了能让广大网友得到更好的服务,杜绝不法人员盗用本站共享资源,最终决定隐藏部分核心资源内容,只供注册会员查看; 本站会员采用微信账号登录/免费注册机制,登录成功后即可免费查看和下载本站所有资源!谢谢支持! 微信账号登录 注意:微信账号登录成功后,若页面没有刷新,请按F5刷新本页面!
在线下载 PALM KERNEL OIL DIETHANOLAMIDE MSDS报告

热门关键字

MSDS常识

中文MSDS报告

英文MSDS报告

标准下载

化工字典CAS